
INTEGER cLAS~~1O)
INTEGER GRAD <1 - :

READ (5, :3 :’
3 F DR MA T ’ I l )

X F ’ ~J . E~~ . 1 )  GO TO 7’

DO 2 1=1,111
2 REATS (5 ,5)C LA S ’V I ”

5 FOPMAT (A4 )

C SHELL SORT
V C INITIALIZE

N lii
ID=P4

6 1 D ’ . ID+l’/d

I 1 = I D+ 1
IFL’5=0

C COMPA PE~~REPLACE~~SET FLAG
11 I Fc : CLA S ( I . ) .L T . C L A S( I1 . ’ ) G O  TO

I TEMP CLAS Ci)
CLAS (i) CLAS (I  i l

CLAS (I 1) = I TEMP

IFLG=1

C PICK UP NEXT PAIR IF NOT REACHED END OF TABLE

1 11= 11+ 1
IF (II.GT.N) GO TO 4
1 1 +1
GD TO 11

C IS TABLE SORTED
4 I F ( I F LG .G T .0 )  50 TO 6

IF(ID.NE . 1) ‘30 TO 6
STOP

7 REAt’ (5,8) NAME,IGRD
8 FORMAT (A 4 ,1 3)  

V

C LINEAR SEARCH
Dci 16 i 1 ,  10
I F ( C LA S(I ) . E~~ .NAME)  ‘30 TD 14

16 CONTINUE
WPITE (6, 13)

13 FORPIAT (1H ,6X,SEAPCH FAIL )
STOP

1 4 K  I

GRAD (K) IGRD
READ (5, 9’

9 FORMAT (p1)
IF(J.EEI.121) GD TO 10
GD TO 7
STOP

10 DO 12 I 1 ,1U

12 WRITE (6, 15)cL~~s(1 ~GPAD (I)
15 FOPHAT(j I.4 ,R4 ,lUx ,13) Fig. 4: The Final Code

STOP
END

~TDP 13
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Fig. 5: A Flowchart
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 11 1 1 1 1  1 1  1 1  1 1  1 1  1 1

2 1 1 1 1 0 0 0 0 0 0  0 0 0 0  0 0  0 0  0 0

3 1 1 0 0 1 1 0 0 1 1  1 0  1 1  0 0  1 1  0 0
4 1 0 0 0 1 0 0 0 1 0  0 0  1 0  0 0  1 0  0 0

5 0 1 0 0 0 1 0 0 0 1  0 0  0 1  0 0  0 1  0 0

6 0 0 1 0 0 0 1 0 0 0  1 0 0 1  1 0  0 0  1 0

7 0 0 0 1 0 0 0 1 0 0  0 1  0 0  0 1  0 0  0 1

P =  8 0 0 1 1 0 0 1 1 0 0  1 1  0 0  1 1  0 0  1 1

9 0 0 0 0 0 0 0 0 1 1  1 1  0 0  0 0 0 0  0 0

10 0 0 0 0 0 0 0 . ~~~1 1 1 1  0 0 0 0  0 0 0 0

11 0 0 0 0 0 0 0 0 0 0  0 0  0 0  0 0  1 1  1 1

12 0 0 0 0 1 1 1 1 0 0  0 0  0 0  0 0  0 0  0 0
13 0 0 0 0 1 1 1 1 1 1  1 1  1 1  1 1  1 1  1 1
14 0 0 0 0 0 0 0 0 1 1  1 1  1 1  1 1  1 1  1 1

15 0 0 0 0 0 0 0 0 1 1  1 1  1 1  1 1  0 0  0 0

Table 1. The path matrix for the flowchart in Figure 5.

The flowchart in Figure 5 is small enough so that the feasible paths
can be found by inspection , as was done in [lJ . It is desirable to have a
more methodical way of finding the feasible paths for larger flowcharts. The
method proposed in [1] was to find the feasible paths by logical ope ration s
upon P . and then to remove the corresponding columns from P. If the
method of finding infeasible paths was imperfect, as it promises to be, and
some infeasible paths remained undetected, then the remaining matrix would

V contain not only all the feasible paths and but also some infeasible ones.
The Infeasible paths would then be found and removed by methods descr ibed
in [1], as the matrix remaining from P was used in furthe r reductions.

The approach followed for finding the columns of P (which represent the
infeasible paths). was to establish vector functions of feasible paths. Sub-
sequently, logical operations were performed between the vectors and the
columns of P. For example, from the flowchart It can be seen that any
feasible path containing segment 2 mus t also contain segment 3, and con-
versely. This can be expressed as a column vecto r C 1 whose transpose is
C ‘

~ 
(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Also, any feasible path containing

segment 12 mus t also contain segment 8, but not conversely. Perhaps this
could be expressed as C~ = (0 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0). In any case ,
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the tester of the program could construct a number of such vectors  desc rib-
ing the relationships existing the flow-chart. Unfortunately ,  this approach
was not fruitful.

It may be possible to perform ANDing operations between the C. and the
columns of P and to find columns which represent infeasible paths. ‘For
example, the following was tried and found wanting: Any column of P, say
k., represents an infeasible path if and only if

C. ° k. ~ C. all i (1)

Using just C1 and C , it so happt~~~ that ( 1) would correctly detect paths
3,4, 5, and 6 as infeasib~e. It would incorrectly call paths 11 and 12 infeasi-
ble. (1) could be made to work for path 11 and 12 by adding to the set of the
Ci a vecto r which says that any path containing segment 9 must also contain
segment 8, namely C = (0 , 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0). But for this pro-
cedu re to be workable it cannot depend on the set of the C. being complete.
While it is not fatal if the procedure leaves some infeasible paths undetected,
it must not unde r any circumstances incorrectly call a feasible path infeasi-
ble.

In an attempt to remedy the defect involved in needing a complete set of
the C., ANDing with sing le vectors C. instead of the complete set was tried.
Unfo r1tunately this approached also failed.

Anothe r approach would be to change the inequality in (1) to an equality
and search for feasible paths instead of infeasible ones , but the re still is the
risk in that method that some feasible paths would be called infeasible be-
cause of the set of the C1 being incomp lete.

Also, an approach using ORing was tried , with results that were even
less acceptable than those from ANtflng.

The above summarizes the approaches undertaken , and the difficulties
that surfaced. Current effort  on this problem involves: (1) furthe r search
for a satisfactory algorithm to estimate the number of feasible paths , and
(2) methods for constructing an automatic test driver , where the number of
inputs will equal the number of feasible paths (see Section 3. 8. 6).

REFERENCE

1. Gary S. Popkin, “Program Paths and the Number of Tests Needed to
Ve rif y a Compute r Program, ” “Summary of Technical Progress , Soft-
ware  Modeling Studie s, ” RADC-TR-76-  143, pp. 40-49, May, 1976.
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3. 7 Statistical Theory of Program Testing and Provi.ng - by
Arthu r E. Laemmel

3. 7. 1 Introduction

The purpose of this work is to extend the results on program testing ,
reported in the preceding progress report.

The usual approach to proving program correctness has so far been
applied successfully only to small programs. The practical approach to
large programs is to run a number of tests. The larger the number of such
tests , completed without e r rors , the greater is our confidence in the pro-
gram.

The method presented here is to combine both these approaches, this
being partially theoretical program proving , and partially experimental
testing.

3. 7. 2 A Model of Test Strategy

Observe that the result of testing a program is one of the following
two outcomes:

1) The program failed on input x.
or

2) The program operates correctl y on n inputs.

The same approach is often followed to investigate in a preliminary
fashion the validity of a conjectured mathematical theorem. By analogy, we
choose parameter values, substitute into the postulated theorem, and cal-
culate the output. The result of this process is completely analogous to the
two outcomes stated above. In a mathematical theorem, once we satified
outselves that no counter example exists for a great number of tries, we
may proceed and try to prove the postulated theorem. In a program we will
not t ry  to establish the validity of the program by proof , but be content with
the confidence achieved after a large number of tests. In fact , M. Rabin
challenges the notion of m athem atical proof in the context of computational
algorithms. He states that it is sufficient to establish that a statement is
true to a very high probability (e.g. , l_ 2 ~~ 00 ) rathe r than to demand an
exact proof 1~

We can model the above test process and optimize it by analogy with the
well-known, elementar y probability example of dra~wlng a ball from a box.We will follow the model suggested by W. L. Black

A version of the model might be rephrased in t raditional terms as
follows: a single red ball is In one of two boxes , each of which contains a
very large number of white balls. Let

Pj  = a-priori probability that red ball Is In box i
V 

m1 = probability that if red ball is In box I then a single look willmiss it
c1 = cost of a single look in box i

~~~ . - - V~~~~~~
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Black has given a simple way to find the minimum expected cost strategy
for searching fo r the red ball. Arrange the numbers

n i = 1 2p. in. (1-in,)
1 1 n 1, 2, 3...

in decreasing order. If the k’th number in this arrangement is one with i 1
then the kt th look should be in box i, othe rwise in the othe r box.

In order to get a feeling for this strategy in the present application, let
box 1 represent possible proofs that a certain compute r program works cor-
rectly and box 2 represent various sets of input data.

Choose parameters:

p 1= .9 ..—(program probably OK) p2 = .1

= . 999 compute r search for m2 . 2 one

c 1 = 100 a proof time-consuming c2 = 5 program
and not likely to succeed test is easy

p 1 ( i—rn 1) p2 ( l-m 2
)

= ,000009 = .0l6c 1 c2

p 1 (1-in 1)m 1 p2 ( l-m 2 )m 2
= . 00000899 = . 0032

C
l 

C
2

p 1(1-rn 1 )m~ p2
(1~m2

)m~
— = . 00000898 = .00064C l C

2

.00000897 .00128

.00000896 . 000025 6

00000895 . 000005 12

According to this, looks 1, 2, 3, 4, and 5 should be in box 2, then looks 6, 7,
8 (for several hundred looks) should be in box 1. This strategy simply says
to look in the box which has the highest ratio of a-poste rlori proba bility to
cost at any stage. It is intuitively satisfying that the f i r s t  looks were for
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counter examp1e~~, and (pe rhaps) that the sixth look was for a proof . It is not
too satisf ying that these looks are to be followed by a attempts at a proof ,
where a is given by

.000009 m 1~~ = .000005 12

.57 = ( l- . O O l) a
= 1- . OOla

If the f i r s t  series above decreased more rapidly, and the second series
decreased more slowly, the strategy would go back and for th  between proof
and counte r example more frequently. The main difficulty is that successive
trial s, either for proof or counter examples , are not satistically indepen-
dent as is requi red in Black’s model.

Each attempt at a proof can build on the last attempt because any partial
results obtained in the previous attempt can be used in the next. This
means that m 1 should decrease with n instead of remaining constant. On
the othe r hand’, if a compute r program is tested with 10 random inputs , and
if no failure occurs for the first  9, than the 10th trial certainly gives less
information than the 1st trial. This means that m3 should increase with n,
i.e. that errors  are harder to find with a sing le test late r on in the testing
sequence. Such a result can be derived from formulas given in the previous
report, since these represent a way to describe statis tical dependence among
test outcomes.

Incidentally, the same approach was successfully applied to the opti-
mization of a rq liabillty structure under cost constraint by M. Messinger and
M. L. Shooman ). The algorithm allocated redundant components to the
structure in a sequence in such a way that each addition of a component
maximized the gain in reliability per dollar.

3. 7. 3 Conclusion

The work is continuing in this area. The object is to formalize the
interactive part-proof, part-test procedure to program verification with a
prescribed confidence level.

Refe rences

1. M. Rabin , Carnegie -Mellon Symposium on New Directions and Recent
Results in Algorithms and Complexity, April 7-9, (reported in Pape r
Crisis . SIAM News, Vol. 9, number 4 , August 1976).

2. W. L. Black , “ Discrete Sequential Search” Information and Control,
vol. 8, pp. 159-162. 1965.

3. M. Messinger and M. Shooman , “ Optimum Allocation of Spares
Redundancy: A Tutorial Survey. ” IEEE Transactions on Reliability.
July 1071.
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3. 8 Implementation of Shooman’s Model of Exhaustive Testing 
- 

An Auto-
mat ic  Type l.A Tester - by Denis L. Baggi

3,8. 1 Introduction

In an inte rnal paper “Analytical Models for  Software Testings ” Martin L.
Shooman describes a scheme for imp lementing a drive r program to auto-
matically test each path of a given program. An imp lementation of this
scheme in PLI 1, with a few revisions, is described here , along with two
examples of programs, which we re run with normal analytical debugging
techniques - i.e., with some testing data - and through the testing program.
Comparisons among man-hour efforts and compute r time in both cases are
made .

3.8.2 The Testing Driver Program

A program, refe r red to as driver program, has been developed and run
in conjunction with two programming examples. Its purpose is to allow auto-
matic testing of all possible paths of any given program. A description of
its func tioning follows.

The driver program requireR a data card containing an inte ge r , N-
TESTS, i.e., the numbe r of IF statements , plus the number of repetitive DO
groups , in the program and subroutines , to be supplied by the prog rammer.

~~ he next data ite m has to be an “orde r , ” i.e., a character string such
as ~NORMAL OPERATION,’ or ‘TEST,’ or any other string. If the orde r is
‘NORMAL OPERATION, ’ then the drive r allow s normal functioning of the
program to be tested, e.g. , with a set of data designed , by the programmer,
to test some cases - a normal debugging practice.

If the orde r is ‘TEST , ’ no data set is needed for the te s te d program,
but an array,  T, with lower bound 1 and upper bound N-TESTS (the numbe r
of tests , as read in previously), will be constructed to represent, in ascend-
ing orde r , all possible bit combinations of binary numbers from 0 up to 2 **N-TESTS - 1; this array is called testing word, and it thus consists of the
bits of a binary counte r with N-TESTS bits . Notice that the value 0 is in fact
represented, in the corresponding T, by - 1, while 1 is represente d by 1.
Eventually the program to test is run for any such binary combination.

For any other orde r string, such as ~~~~~~~~~~~~~~~ as well as in the case
of absence of data , the whole system stops .

3.8. 3. The Tested Program

Although no particular care has been taken to make sure that the drive r
program Is fully compatible with all possible programs to test it is believed
that, at Its present state , the invariant part Is flexible enough to accept a
large class of programs with no modification, requiring for othe r programs
only minor, sensible changes .
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Shooman indicates (in p. 5-1 of his paper),  a s t ra tegy for implementing
the drive r program, namely, a revised way of wr i t ing  IF statements and
DO loops in a p rogram to be submitted to te s ting; howeve r , since such
schemes lack generality (-i.e. , onl y conditions of the type “exp > 0” are al-
lowed in IF state ments , and only limits f rom 1 up to an uppe r bound > 0 in
DO loops -), the scheme descr ibed he re has been develope d as a natural  de-
riv~tive of these suggestions; hence , the only restrictions to be obeyed in
writing a program will be the following:

la) instead of IF cond THEN statement
1; ELSE statement2

;

write IF F(cond) THEN statement 1; ELSE statement 2;

lb) instead of DO I = LIMIT 1 TO LIMIT 2 BY INCR

write DO I = GL (LIMIT 1, LIMIT 2 ) TO GH BY INCR;

lc) instead of DO WHILE (cond)

w rite DO WHILE (H(cond) );

(where: F, GL, OH and H are described in the forth coming tech-
nical report)

2) function and subroutine procedures are possible but should be in-
te rnal to the program

3) variables used in the program which are assigned a value through
a read (GET LIST) statement should be initialized , for  instance through a
DCL INIT statement.

All these restric tions could be removed. To remove 1), one could con-
struct  a subprogram in the operating system which automatically supplies F,
GL and GH , and H. Subroutines could be exte rnal, as long as a mechanism
is provided for passing back and forth T - e . g . ,  COMMON statements
in FORTRAN -, hence removing 2) . And point 3) is a direct consequence of
the read-in scheme described by Shooman , which could be modified at will.

3.8.4 The Two Examples

For illustration two programs we re chosen at the two ends of a spectrum:
one with many IF statements, and input data , and the othe r with DO groups
and one subroutine, and no input data.

A. First Example : Compute r Solution of a Card Game

Thi s is a very slightly altered version of Shooman ’s algorithm of Fig.
4..3 in his pape r. The algorithm appears in Fig. 8. It determines the win-
ner of a card game, in which playe r A is dealt two cards , Al  and A2, and B,
similarly, geté B1 and B2 , (four integers read in wi th  a GET LIST s ta tement) .
If both winners have a pair , the highest  pair wins , or if they are equal it is
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Fig. 8: Flow Cha rt for  Compute r Solution of a Card Game
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a tie; if onl y one playe r has a pai r , he wins; o therwise  the hi ghes t  card wins ,
or  if they are equal , the highest second card wins; identical hands are ties.
At f i r s t  the system was run under ‘NORMAL OPERATION’ conditions. The
results are shown in the for th  coming report .  The system was next run
under ‘TEST ’ condit ions. The tested program has 12 IF statements , hence we
have a 12-bit testing word.

Since the p rogram is fully debugged , no e r ro r can be seen in the output
listing; should one e r ro r  appear, however, it would be easy, from the test-
ing word , to reconstruct  the pa th and detect the deficient statement.

B. Second example: A Program Which Prints  the Prime Factors of
all Integers from 1 to 100

This is a simp le prqgram which tests each intege r f rom 1 to 100, prints
it , and its prime factors , or the word PRIME if it is prime. Its algorithm
is presente d in Fig. 9.

The inte rnal subroutine PRINTOUT prints the results; this procedure
has been incorporated to show the generality of the scheme including sub-
programs. Notice that, although it is called only once f rom the main pro-
gram, it could be invoked as many times as needed , because of tne desi gn of
the internal procedure s of the drive r program, which know by themselves
how to select a new bit in the te s ting word each time they are used. V

3. 8. 5 Efficien~ y of the Syste m

Program Example A.

- it took 30 minutes to desi gn the program

- it takes no extra time to redesign a program according to the
specifications expres3ed in section 3. 8. 3

- it took 10 minute s to find a data set to t es t  some well-choosen paths

- the program ran in 2. 41 minute s unde r ‘NORMAL OPERATION ’ w i th
that set of data

- the program ran in 4. 12 minutes unde r ‘TEST ’ conditions , exp lor-
ing all paths

Program Example B

- it took 20 minute s to design the program

- the re is no data

- the program ran in 3.81 minute s for 100 in tegers

- the progr am ran in 1. 76 minutes unde r TEST conditions
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N • N ÷ 1 N < 100
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Factors from
1 to 100 YES 
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1~

Hence the system provide s the following:

Advantage

No time is spent in finding a data set to debug a program.

Dis advantage

Running time may inc rease exponentially with the number of IF state-
ments and DO loops. For instance , P r ogr a m  A contains 12 IF statements ,
and the refore the testing word has 13 bits and 8192 runs through the program
were needed to test its 100 paths (hence , with this blind mechanical approach
many tests are meaningless) . However, if the program becomes too large , it
can be separated in portions to be teste d individually, along with the inter-
connecting data sets . Fur thermore, this disadvantage is compensate d by
those cases of programs with many DO-loops and few IF statements . Pro-
gram B, for instance , required almost four minute s for a hundred integers ,
and would use a lot more for , say 10, 000 integers, but it took less than two
minutes to go through all paths as defined , and would still take the same
amount of time no matte r how many integers it would have to consider.
Hence a TEST run is , in these cases , very  time saving.

3 .8 . 6 Conclusions

A possible implementation for an automatic program tester of type l.Ahas been discussed. The teste r ignores the semantics of the tested program,
but is able however to run through all possible paths present in a program
and catch a possible error.

This implementation, rathe r than represent ing an ultimate result, is
meant to be an illustration of the method and techniques proposed by Shooman
in his paper; it would be easy, for instance , to make the drive r program
more flexible or sui ted to othe r styles or programming language s .

It was rewarding to discove r that even within the limited development of
these techniques some goals have been achieved, namely, the realization of
a system which has already prove d its usefulness in de bugging the described
programs.
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4. 0 Directions for Next Period ’s Work

In the next period we plan to work on the following:

1. Adamowj cz: Further work on measures for  the evaluation of
software.

2. Baggi: Completion of a report  on the con st ruct ion of an
automatic drive r for ~~~~~~~~~~ model of test cove r-
irig each program. path.

3. Laemmel: Continuation of studies on statistical  program test-
ing.

4. Marshall: Application of graph theory to statistical sampling
approaches for software reliability.

5. Ruston and Applications of software ph ysics to complexity
Berling~~~: measures.

6. Shooman and Continuation of work on levels of program tes t ing
Pqpkin:

7. Shooman and Expe rimental te s ts for ( 1) validation of seeding/
Ruston. : tagging estimates (2)  Shooman ’s extended de bugging

models ( incorporat ing e r ro rs  generated dur ing the
de bugging process ) ,  and (3) obtaining data for
verif icat ion of 8oftware physics and othe r comple x-
ity measures .

5. 0 Professional Activities

This section summarizes the professional activities of the research
personnel working on this contract .

5. 1 Published and Submitted Papers and Repo rts

1. C. L. Usu and L. Shaw, “Downtime Dis t r ibut ions  Based on a
Mult ivar iate  Exponential Dis t r ibut ion , ” Report  No. Poly EE/  EP
76-002 EER 120 , Pol ytechnic Institute of New York , Feb. 1976 .

2. C. Marshall , “Contributions to the Theory of Avaii labil i ty, ” Re-port No. Poly E E/ E P  76-004 EER 121, Polytechnic In s t i tu te  ofNew York , Feb. 1976.

3. S. N. Mohanty and M. Adamowicz , “Proposed Measure s for the
Evaluation of Software,” to appear with Proceedings of the Sym-
posium on Compute r Software Engineer ing,  1976 .
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4. L. Shaw and M. Shooman, “Confidence Bounds and Propagation
of Uncerta int ies  in System Availability and Reliabil i ty Computa -
tions , ” Technical Report N00014-67-A-0438-0013, Poly E E / E P
75-002 Polytechnic Institute of New York , Jan. 1976 .

5. L. Shaw and S. Sinkar , “Redundant Spares Alloc ation to Reduce
Reliability Costs , ” Naval Research Logistic8 Quarter l y vol. 23,
No . 2, pp. 179- 194 , June 1976.

6. M. L. Shooman, “Recent Developments in Software Rel iabi l i ty  -
The State of the Art , ” To appear in the Proc~~~dings of the
Thirteenth IEEE Compute r Society International Conference ,
Wa shington, D. C . , Sept. 1976.

7. M. L. Shooman “Structural Models for Software Reliability Pre-
diction , ” Second National Confe re nce on Software Engineering ,
Octobe r , 1976 , San Francisco, Calif.

8. M. L. Shooman and M. I. Bolsky, “T ype s, Distribution, and Test
Correction Time s for Programming E r r o r s , “ IEEE Transact ions
on Reliability, vol. R-25 , No. 2, pp. 69-70 , June 1976.

9. M. L. Shooman, M. Horodniceanu, and E. J. Cantilli , “Syste m
Safety Applied to Transportat ion Systems, ” To appear in the Pro-
ceedings of Inte r Society Conference on Transportat ion, Los
Angele s , Calif. Jul y 1976.

10. M. L. Shooman and S. Natarajan , “Effect  of Manpower Depoly-
ment and E r r o r  Generation on Software Reliability, ” to appear  in
the Proceedings of the Symposium on Compute r Software Engineer-
in g, 1976.

11. M. L. Shooman and H. Ruston , “Cost Reducing, High Reliability
Programming Techniques , ” accepted for the 1976 ORSA/TIMS
Joint National Meeting, November , 1976 .

12. M. L. Shooman and S. Sinkar , “Generation of Reliabil i ty and
Safety Data by Analysis of Expert  Op inion , ” accepte d for  the 1977
Annual Reliability and Maintainability Symposium, Philadelphia ,
PA.

13. M. L. Shooman and A. K. Trivedi , “A Many-State Markov Model
for Compute r Software Performance Parame ters , “ IEEE Trans-
actions on Reliability, vol. R-25 , No. 2, pp. 66-68 , June 1976.

5. 2 Talks and Seminars

1. S. Habib , “An Overview of Mi c roprocessors, ” Seminar , PIN Y,
February 1976.

2. H. Rus ton, “Top-down Design, ” Compute r Seminar, PINY , March
1976 .
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3. D. Baggi , “Desi gn of Automatic Test  Drivers , ” Seminar, PINY ,
June 1976.

4. M. L. Shooman, H. Ruston , A. Suke rt , E, Berlinger A. Laemmel,
E. Lipshitz C, Marshall, B. Rudner , “Software Engineering
Topics , ” Or? 1 Presentation of Progress  on Studies Supported by
the RADC Program, PINY , June 1976 .

5. S. Habib , “User  Services in Remote Entry Environment , ” National
Science Foundation Conference on Computers in Undergraduate Edu-
cation , Bing hamton, NY June 1976.

5. 3 Symposia and Technical Societies

1. M. L. Shooman, Chairman, Program Committee, MRI Symposium
on Computer Software Engineering . New York Cit y .  April
1976.

2. M. Adamowicz, S. Habib, A. Laemmel and H. Ruston , Members ,
Program Committee , MRI Symposium on Compute r Software En-
ginee ring.

5.4 Committees

1. M. L. Shooman, Membe r , IEEE ADCOM (Administrative Commit-
tee) of the Group on Reliability.

2. M. L. Shooman, Membe r , Executive Committee, IEEE Compute r
Society Technical Committee on Software Engineering.

3. M. L. Shooman , Membe r , NASA Advisory Committee on Guidance,
Control and Information Systems.

4. S. Habi b, Chairman, National Lectureship Committee of the As-
sociation for Computing Machinery.

5. S. Habib, Chairman , SIGMICRO (Sepical Interest  Group on Mic ro-
programming) of ACM.
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METRIC SYSTEM

BASE UNITS:

~~~~~~~~~ Unit SI Sy~tbol 
- 

Formula

length metre m
mass kilogram kg
time second a
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous~4ntensity candela cd ...

SUPPLEM ENTARY UNITS :
plane angle radian Tad
solid angle steradian at

DERIVED UNITS:
Acceleration metre per second squared ... rn/s
activity (of a radioactive source) disintegration per second ... (diaintegration)is
angular acceleration radian per second squared .. radii
angular velocity radian per second .. rad/i
area square metre .. m
density kilogram per cubi : metre kgim
electric capacitance farad F A-a/V
electrical conductance siemens S AN
electric field strength volt per metre ... Vim
electric inductance henry H V.a/A
electric potential difference volt V WIA
electric resistance ohm VIA
electromotive forte volt V WIA
energy joule J N.m
entropy joule per kelvin V . .  J/K
force newton N kg.m/a
frequency hertz Hz (cycle)/a
illuminance lus lx lm/m
luminance candela per square metre V cd/rn
luminous flux lumen Im cd.sr
magnetic field strength ampere per metre V V A/m
magnetic flux weber Wb V.a
magnetic flux density teals T Wb/m
magnetomotive force ampere A V

power watt W Is
pressure pasca l Pa NIm
quantity of electricity coulomb C A.s
quantity of heat joule I N.,r
radiant Intensity watt per steradian ... WIs.
specific heat joule per kilogram-kelvin - . .  J/kg.K
stress pascal Pa Nirn
thermal conductivity watt per metre-kelvin .. WIrn.K
ve locity metre per second . . -  rn/s
viscosity, dynamic pascal-second . - .  Ps-s
viscosity, kinematic square metre per second . .  In/s
voltage volt V WIA
volume cubic metre .. m
wavenumber recIprocal metre V O •  (wav e~ m
work joule I N.m

SI PR~~UES:

Multiplication Factors I’reflx SI Symbol

1 000 000 000 000 = 10” t,,ra
1 000 000 000 = 10’ giga (;

1 000 000 .. I0~ meg. M
1 000 10’ kilo k

100 = 10’ hectn h
10 10’ deka da

0.1 1 0 ’  dad’ d
0.01 1 0 ’  canti ’ I:

000 1 1 0 ’  mlIIt m
(1000 001 10 • mk:m

0.000 000 001 l(r’ n.no
0.1*10 (tOt) 000 (101 — 1(1— “ pk~I_)0.000 (100 000 Q00 001 1u1 ”

(1.0(X) 000 000 00(1 (tOO 001 1 0’  .ttc, a

To be avoided where possible.
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MISSION
of

Rome Air Development Center

RA.X plans and conducts research, exploratory and advanced
developmsnt program s in c~~~aisd, control , and coamtunications
(C3) activities , and in the C3 areas of inf ormatioz~ sciences
and intelligence. The principal technical mission areas
are conununicat.ions, electromagnetic guidance and control ,
surveillance of ground and aerospac e objects, intelligence
data collection and handling, inf ormation systms technology,
ionospheric prop agation, solid sf ; ate sciences, microwave
p hysics and electronic reliability, asintainab ilitg and
compatib ility.
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